

Radar Systems Engineering Lecture 1 Introduction

Dr. Robert M. O'Donnell IEEE New Hampshire Section Guest Lecturer

• Background

• Radar basics

• Course overview

• Background

- ⇒ Some pre-radar history
 - How radar works

The one viewgraph, no math answer!

- The early days of radar
- Two examples from World War II

Air defense in "The Battle of Britain"

Summer 1940

The role of radar in stopping the German V-1 "Buzz Bomb" attacks on Britain

V-1 The first cruise missile About 9,000 V_1's fired at Britain

- Radar basics
- Course overview

Omaha Beach 1944

Pre-Radar Aircraft Detection – Optical Systems

Courtesy of US Army Signal Corps.

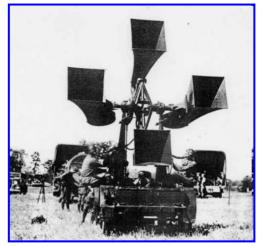
- Significant range limitation
 - Attenuation by atmosphere
- Narrow field of view
 - Caused by very small wavelength
- Clouds Cover limits operational usefulness
 - Worldwide 40-80% of the time

Courtesy of UK Government

Courtesy of National Archives.

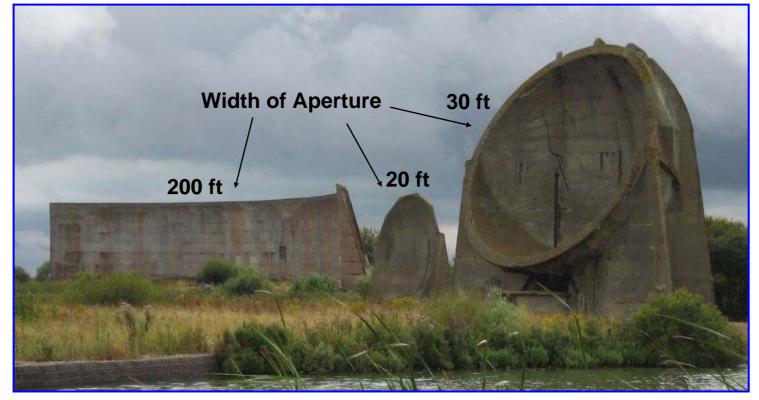
ISCCP - Total Cloud Cover 1983-1990

Japanese Acoustic Detection System

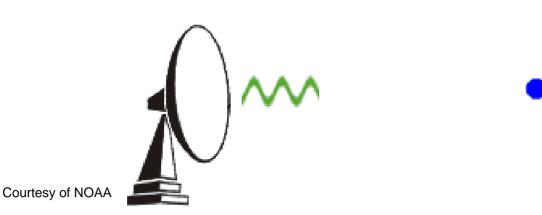

Courtesy of Wikimedia

- Developed and used in first half of 20th century
- Attributes
 - Limited Range
 - approximately 10+ miles
 - Limited field of view
 - Ambient background noise limited (weather, etc)
- Used with searchlights at night

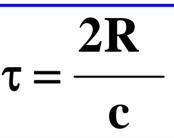
US Acoustic Detection Systems

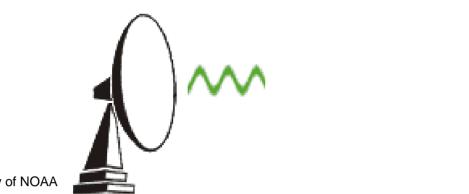

Courtesy of US Army Signal Corps.

Courtesy of US Army Signal Corps.



Courtesy of s__i in Wikimedia


- Used for aircraft detection (pre-World War II)
- Short detection range (less than 15 miles)
 - Tactically useful for detecting slow WW1 Zeppelins
 - Not useful for detecting faster WW2 German bombers



- An electromagnetic wave is transmitted by the radar.
- Some of the energy is scattered when it hits a distant target
- A small portion of the scattered energy, the radar echo, is collected by the radar antenna.
- The time difference between:
 - when the pulse of electromagnetic energy is transmitted, and when the target echo is received,
 - is a measure of how far away the target is.

Courtesy of NOAA

- An electromagnetic wave is transmitted by the radar.
- Some of the energy is scattered when it hits a distant target
- A small portion of the scattered energy, the radar echo, is collected by the radar antenna.
- The time difference between:
 - when the pulse of electromagnetic energy is transmitted, and when the target echo is received,

is a measure of how far away the target is.

Trust me, its going to get a lot more complicated !

- Background
 - Some pre-radar history
 - How radar works

The one viewgraph, no math answer!

- ➡> The early days of radar
 - Two examples from World War II

Air defense in "The Battle of Britain"

Summer 1940

The role of radar in stopping the German V-1 "Buzz Bomb" attacks on Britain

V-1 The first cruise missile About 9,000 V_1's fired at Britain

- Radar basics
- Course overview

- Sir Robert Watson-Watt
 - Considered by many "the inventor of radar"
 - Significant early work occurred in many other countries, including the United States (1920sand 1930s)
 - After experimental verification of the principles, Watson-Watt was granted a patent in 1935
 - Leader in the development of the Chain Home radar systems
 Chain Home, Chain Home Low
 Ground Control Intercept and Airborne Intercept Radar
- Tizard Mission
- MIT Radiation Laboratory

Sir Robert Watson-Watt

Courtesy of Wikimedia IEEE New Hampshire Section

- Sir Robert Watson-Watt
- "Tizard Mission" (British Technical & Scientific Mission to US)
 - Seven British radar experts and a "Black Box" sent to US in Fall of 1940
 - Contained cavity magnetron and "nearly everything Britain knew about radar"

Original British 10 cm 10 kW Pulsed magnetron

- Possession of cavity magnetron technology was critical to Allied war radar development
- MIT Radiation Laboratory

- Sir Robert Watson-Watt
- Tizard Mission
- MIT Radiation Laboratory (operated between 1940 & 1945)
 - Developed and fielded advanced radar systems for war use
 - Exploited British 10 cm cavity magnetron invention
 - Grew to almost 4000 persons (9 received the Nobel Prize)
 - Designed almost half of the radars deployed in World War II
 - Created over 100 different radar systems (\$1.5B worth of radar)

Building 20- Home of MIT Radiation Laboratory

Courtesy of Massachusetts Institute of Technology

The control Radal

SCR-584 (circa World War 2) Fire Control Radar

Courtesy of Department of Defense

- Background
 - Some pre-radar history
 - How radar works

The one viewgraph, no math answer!

The early days of radar

Two examples from World War II

Air defense during "The Battle of Britain" Summer 1940

The role of radar in stopping the German V-1 "Buzz Bomb" attacks on Britain

V-1 The first cruise missile About 9,000 V-1's fired at Britain


- The basics / the big picture
- Course overview

Chain Home Radar System Deployment Began 1936

Chain Home Radar Coverage circa 1940 (21 Early Warning Radar Sites)

Sept 2006 Photograph of Three Chain Home Transmit Towers, near Dover

Courtesy of Robert Cromwell. Used with permission.

Typical Chain Home Radar Site

Courtesy of MIT Lincoln Laboratory Used with permission

Chain Home Radar Parameters

- Wavelength
 10 to 15 m
- Frequency
 - 20 to 30 MHz
- Antenna
 - Dipole Array on Transmit
 - Crossed Dipoles on Receive
- Azimuth Beamwidth
 - ~ 100°
- Peak Power
 350 kW
- Detection Range
 - ~160 nmi on JU-88 German Bomber

Two Transmitter Towers $-\lambda/2$ 360' **One Receiver Tower** $\lambda/2$ 240' 215 95' 45' 0' Main Gap Filler + Antenna Antenna **Receive Antenna Transmit Antenna** Courtesy of MIT Lincoln Laboratory Used with permission

Radar Systems Course 18 Introduction 10/1/2009

Chain Home Radar System

Receiver / Detection Operator

Chain Home Transmitter

Courtesy of J M Briscoe

Goniometer

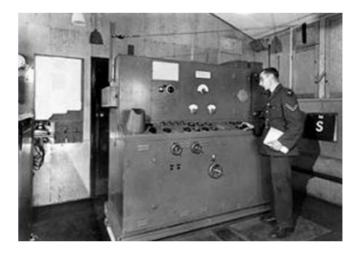
Courtesy of United Kingdom Government.

Chain Home Receiver Hut

Plotting Area in Chain Home Radar Receiver Room

Operation Room at Air Group 10

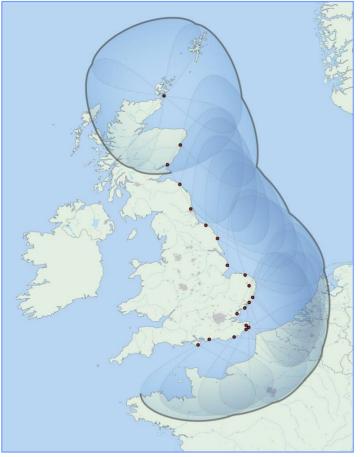
Courtesy of United Kingdom Government.



Chain Home Low Antenna

Chain Home Low Transmitter

- Twenty four Chain Home Low radar's were added to fill coverage gaps at low elevation angles (< 2°)
 - Their low frequency 200 MHz lessened multipath lobing effects relative to Chain Home (20-30 MHz)
- Detection range 25 mi at 500 ft


Courtesy of United Kingdom Government.

Approximate Chain Home Radar Coverage

Sept 1940 (21 Early Warning Radar Sites)

Courtesy of MIT Lincoln Laboratory Used with permission

- The Chain Home Radar
 - British "Force Multiplier" during the Battle of Britain"
- Timely warning of direction and size of German aircraft attacks allowed British to
 - Focus their limited numbers of interceptor aircraft
 - Achieve numerical parity with the attacking German aircraft
- Effect on the War
 - Germany was unable to achieve Air Superiority
 - Invasion of Great Britain was postponed indefinitely

• Background

- Some pre-radar history
- How radar works

The one viewgraph, no math answer!

- The early days of radar
- Two examples from World War II

Air defense during "The Battle of Britain"

Summer 1940

The role of radar in stopping the German V-1 "Buzz Bomb" attacks on Britain

V-1 The first cruise missile About 9,000 V 1's fired at Britain

- The basics / the big picture
- Course overview

V-1 Cruise Missile

Courtesy of Ben pcc Used with permission.

Characteristics

Propulsion	Ramjet
Speed	390 mph
Altitude	2-3000 ft
Range	250 km
Guidance	gyrocompass /
	autopilot
Warhead	850 kg HE
No. Launched	9,000
No. Impacted	
London Area	a 2,400

SCR-584

SCR-584 Parameters

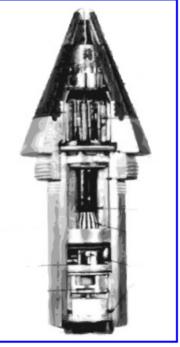
Wavelength	10 cm (S-Band)
Frequency	3,000 MHz
Magnetron	2J32
Peak Power	250 kW
Pulse Width	0.8µsec
PRF	1707 Hz
Antenna	
Diameter	6 ft
Beamwidth	4 °
Azimuth Coverage	360°
Maximum Range	40 mi
Range Accuracy	75 ft
Azimuth Accuracy	0.06°
Elevation Accuracy	0.06°

SCR-584 (40th Anniversary of MIT Rad Lab)

Courtesy of MIT Lincoln Laboratory

SCR-584 Parameters

Wavelength	10 cm (S-Band)
U	3,000 MHz
Frequency	•
Magnetron	2J32
Peak Power	250 kW
Pulse Width	0.8µsec
PRF	1707 Hz
Antenna	
Diameter	6 ft
Beamwidth	4 °
Azimuth Coverage	360°
Maximum Range	40 mi
Range Accuracy	75 ft
Azimuth Accuracy	0.06°
Elevation Accuracy	0.06°



Circa 1985

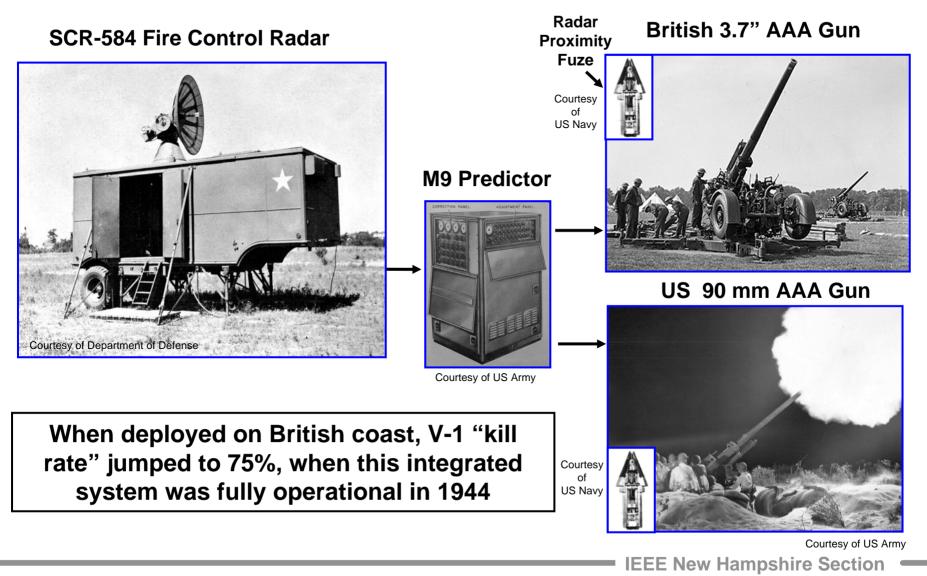
V-53 Radar Proximity Fuze (Cutaway)

Courtesy of US Navy

<u>Operation of</u> <u>Radar Proximity Fuze</u> Must operate under very high g forces

Micro transmitter in fuze emits a continuous wave of ~200 MHz

Receiver in fuze detects the Doppler shift of the moving target

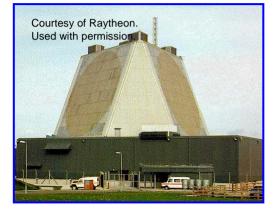

Fuze is detonated when Doppler signal exceeds a threshold

Direct physical hit not necessary for destruction of target

Radar Proximity Fuze Revolutionized AAA and Artillery Warfare

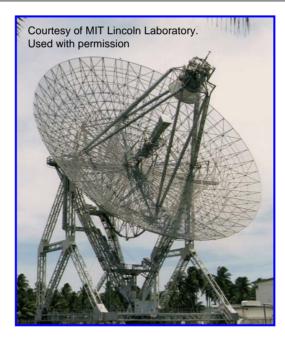
- Background
- Radar basics
- → Utility and positive / negative attributes of radar
 - What radars measure
 - Block diagram of a radar system
 - Different Radar wavelengths / frequencies
 - Descriptive classifications of radars Military, civilian, other
- Course overview

- Long range detection and tracking of targets
 - 1000's of miles
- All weather and day/night operation
- Wide area search capability
- Coherent operation enables
 - Simultaneous reliable target detection and rejection of unwanted "clutter" objects
 - Target imaging (fixed and moving)
 - Very fast beam movement with electronic scanning of antennas (microseconds)
 - Ability to adaptively shape antenna beam to mitigate interference and jamming
- "Relatively lossless, straight line propagation at microwave frequencies

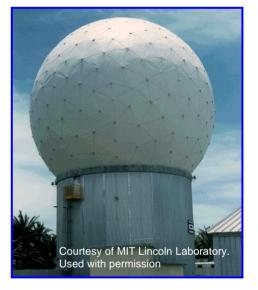

- Long range detection requires
 - Large and heavy antennas
 - High power transmitters
 - Significant power usage
 - \$\$\$\$\$
- Radar beams not propagate well
 - through the Earth, water, or heavy foliage
 - around obstacles
- Vulnerable to jamming, and anti-radiation missiles
- Target can detect that it is being illuminated
- Target can locate the radar in angle-space
- The echo from some targets is becoming very small
 - Low observable technology

Surveillance and Fire Control Radars

Airborne Radars



Instrumentation Radars

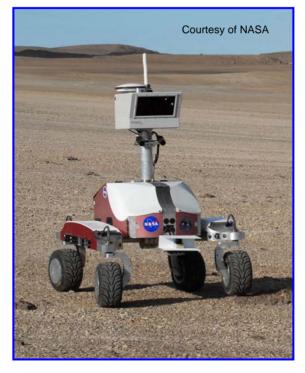


Courtesy of MIT Lincoln Laboratory. Used with permission

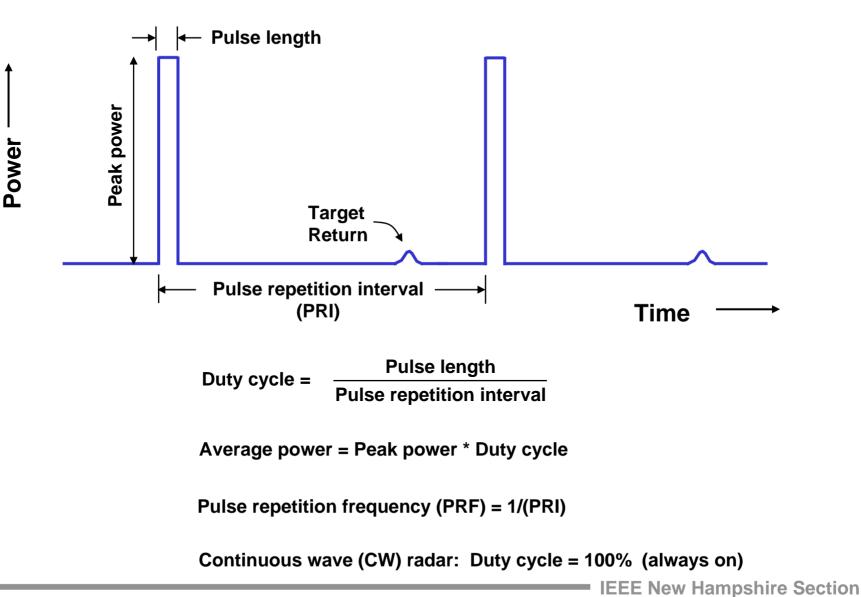
Courtesy of Lockheed Martin Used with permission

Civil Radars

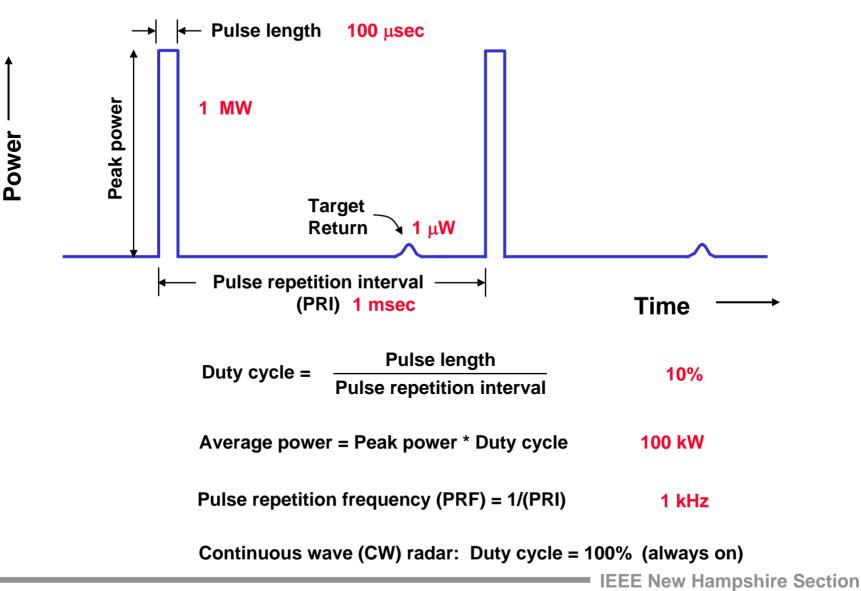
Radar Systems Course 35 Introduction 10/1/2009



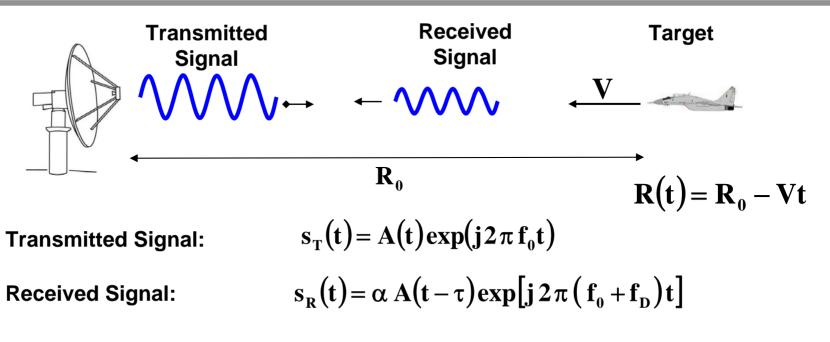
More Civil Radars



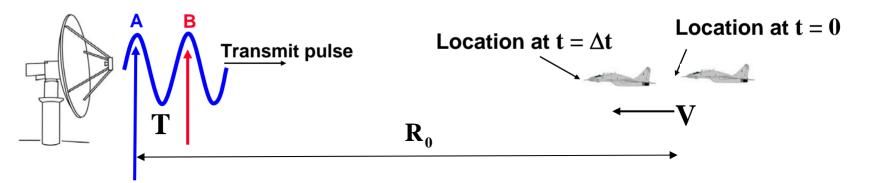
- Background
- Radar basics
 - Utility and positive / negative attributes of radar
 - ⇒ What radars measure
 - Block diagram of a radar system
 - Different Radar wavelengths / frequencies
 - Descriptive classifications of radars Military, civilian, other
- Course overview



Pulsed Radar Terminology and Concepts


Pulsed Radar Terminology and Concepts

Radar Observables



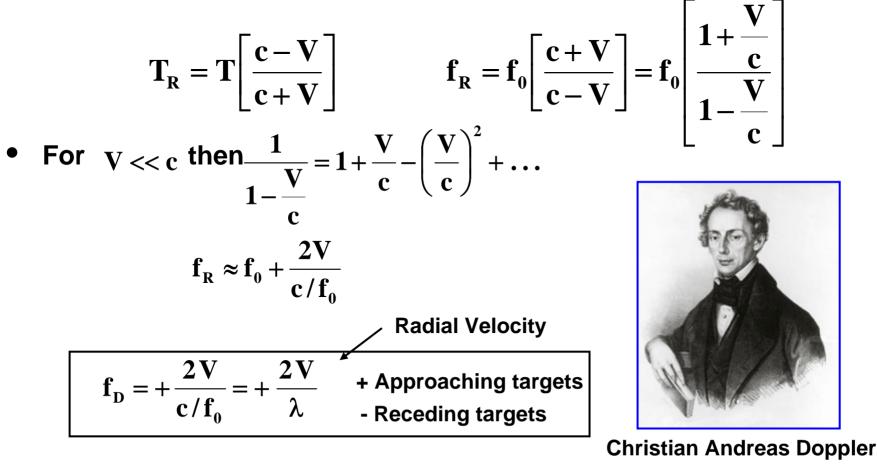
<u>Amplitude</u>	Angle	Time Delay	Doppler Frequency
Depends on RCS, radar parameters, range, etc.	Azimuth and Elevation	$\tau = \frac{2R_0}{c}$	$\mathbf{f}_{\mathrm{D}} = \frac{2 \mathbf{V} \mathbf{f}_{\mathrm{0}}}{\mathrm{c}} = \frac{2 \mathbf{V}}{\lambda}$

- T This peak leaves antenna at time t = 0, when aircraft at R_0
 - The peak A arrives at target at time At
 - Aircraft moving with radial velocity V
 - The period of the transmit pulse is T, and $f_0 = 1/T$ and $c = \lambda/T = \lambda f_0$
 - Note: $c \Delta t = R_0 V \Delta t$ or $\Delta t = \frac{R_0}{c+V}$
 - Time when peak A arrives back at radar $t_A = \frac{2R_0}{c+V}$
 - Time when peak B arrives back at radar

IEEE New Hampshire Section

 $t_{R} = T +$

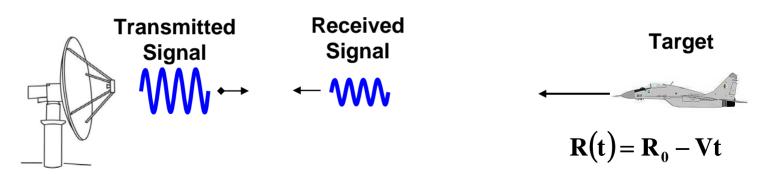
 $\frac{2(R_0 - VT)}{T}$



(1803 - 1853)

IEEE New Hampshire Section

• The period of the transmitted signal is T and the received echo is $T_R = T_B - T_A$ or



Radar Systems Course 42 Introduction 10/1/2009

Radar Observables

Transmitted Signal:

Received Signal:

$$s_{T}(t) = A(t) \exp(j2\pi f_{0}t)$$

$$s_{R}(t) = \alpha A(t-\tau) \exp[j2\pi (f_{0}+f_{D})t]$$

<u>Amplitude</u>

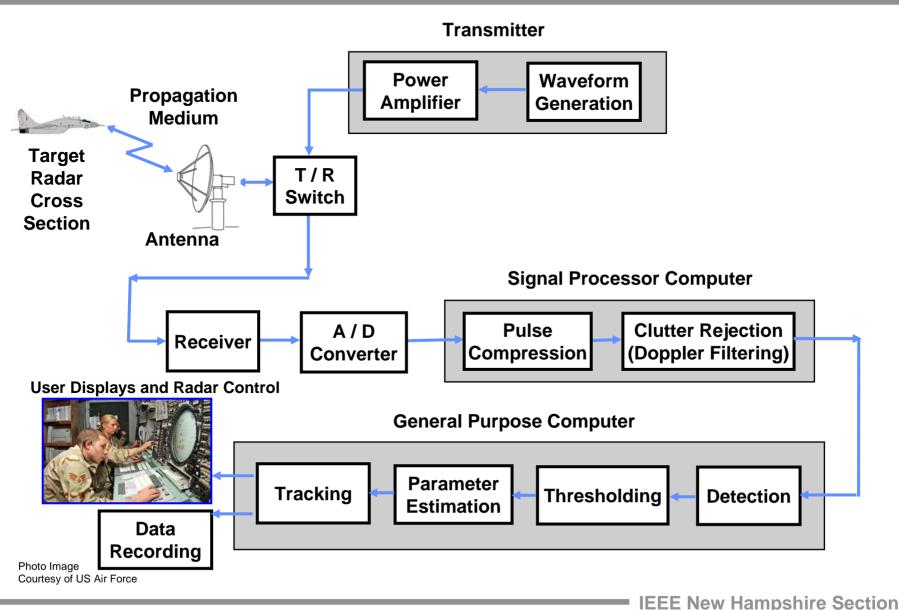
Depends on RCS, radar parameters, range, etc.

<u>Angle</u>
Azimuth
and
Elevation

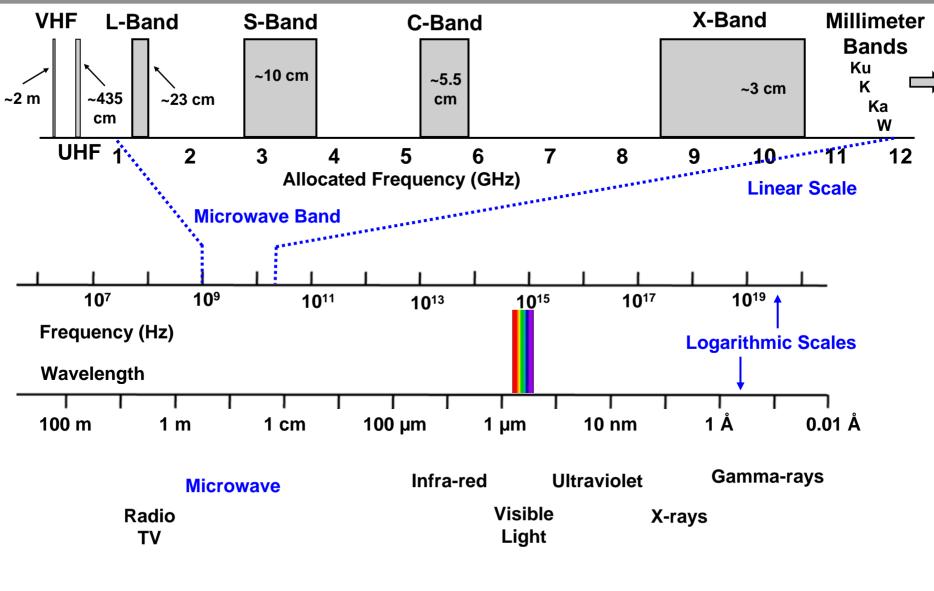
<u> Fime</u>	<u>Delay</u>
$\tau =$	$2R_0$
	С

Doppler Frequency			
f _	$2Vf_0$	_ 2V	
$I_{\rm D} =$	<u>c</u>	$-\frac{\lambda}{\lambda}$	

+ Approaching targets- Receding targets



- Background
- Radar basics
 - Utility and positive / negative attributes of radar
 - What radars measure
 - → Block diagram of a radar system
 - Different Radar wavelengths / frequencies
 - Descriptive classifications of radars Military, civilian, other
- Course overview



- Background
- Radar basics
 - Utility and positive / negative attributes of radar
 - What radars measure
 - Block diagram of a radar system
- Different Radar wavelengths / frequencies
 - Descriptive classifications of radars Military, civilian, other
- Course overview

Radar Frequency Bands

Standard Radar Bands* & Typical Usage

UHF - VHF ALTAIR	HF	3 – 30 MHz	<u>٦</u>
Courtesy of MIT Lincoln Laboratory Used with permission	VHF	30 – 300 MHz	
	UHF	300 MHz – 1 GHz	Search Radars
5 5/4	L-Band	1 – 2 GHz	
	S-Band	2 – 4 GHz	
	C-Band	4 – 8 GHz	
UHF	X-Band	8 – 12 GHz	
UEWR – Fylingsdales, UK GNU Courtesy of spliced	Ku-Band	12 – 18 GHz	
	K-Band	18 – 27 GHz	
	Ka-Band	27 – 40 GHz	
	W-Band	40 – 100+ GHz	
		*From IEEE Standard 52	1-2002

Standard Radar Bands* & Typical Usage

C-Band MOTR MQP-39	HF	3 – 30 MHz	
	VHF	30 – 300 MHz	
NAME OF THE OWNER	UHF	300 MHz – 1 GHz	
	L-Band	1 – 2 GHz	
	S-Band	2 – 4 GHz	
Courtesy of Lockheed Martin Used with permission	C-Band	4 – 8 GHz	
X-Band Haystack Radar	X-Band	8 – 12 GHz Tracking Radars	
	Ku-Band	12 – 18 GHz	
	K-Band	18 – 27 GHz	
	Ka-Band	27 – 40 GHz	
	W-Band	40 – 100+ GHz	
Courtesy of MIT Lincoln Laboratory Used with permission		*From IEEE Standard 521-2002	

L-Band			
TPS-77	HF	3 – 30 MHz	
Courtesy of Lockheed Martin Used with permission	VHF	30 – 300 MHz	
	UHF	300 MHz – 1 GHz	
	L-Band	1 – 2 GHz	
	S-Band	2 – 4 GHz	Search & Track Radars
	C-Band	4 – 8 GHz	Raudis
S-Band AEGIS SPY-1	X-Band	8 – 12 GHz	C-Band Patriot MPQ-53
	Ku-Band	12 – 18 GHz	Courtesy of US MDA Used with permission.
	K-Band	18 – 27 GHz	
	Ka-Band	27 – 40 GHz	
ourtesy of US Navy	W-Band	40 – 100+ GHz	
sed with permission.	*Frc	om IEEE Standard 521-2002	

IEEE New Hampshire Section

Co

Courtesy of US Army. Used with permission.

HF	3 – 30 MHz		
VHF	30 – 300 MHz		
UHF	300 MHz – 1 GHz		
L-Band	1 – 2 GHz		
S-Band	2 – 4 GHz		
C-Band	4 – 8 GHz	٦	
X-Band	8 – 12 GHz		
Ku-Band	12 – 18 GHz		Missile Seekers
K-Band	18 – 27 GHz		
Ka-Band	27 – 40 GHz	J	
W-Band	40 – 100+ GHz		

*From IEEE Standard 521-2002

	HF VHF	3 – 30 MHz 30 – 300 MHz	
Reagan Test Site Kwajalein	UHF	300 MHz – 1 GHz	
And a state of the second state	L-Band	1 – 2 GHz	
	S-Band	2 – 4 GHz	
Fair and the second sec	C-Band	4 – 8 GHz	Range
	X-Band	8 – 12 GHz	Instrumentation Radars
	Ku-Band	12 – 18 GHz	Rauai S
Courtesy of MIT Lincoln Laboratory Used with permission	K-Band	18 – 27 GHz	
	Ka-Band	27 – 40 GHz	
	W-Band	40 – 100+ GHz 🌙	
		*From IEEE Standard 521-2	2002

- Background
- Radar basics
 - Utility and positive / negative attributes of radar
 - What radars measure
 - Block diagram of a radar system
 - Different Radar wavelengths / frequencies
 - Descriptive classifications of radars Military, civilian, other
- Course overview

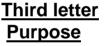
<u>By Function</u> Surveillance Track Fire Control – Guidance Discrimination	<u>By Platform</u> Ground Ship Airborne Space	<u>By Antenna Type</u> Reflector Phased Array (ESA) Hybrid-Scan
By MissionAir Traffic ControlAir DefenseBallistic Missile DefenseSpace SurveillanceAirborne Early Warning (AEW)Ground Moving Target Indication (GMTI)By NamePave PawsCobra DaneSentinelPatriotImproved HawkAegisALCORFirefinderTRADEXHaystack	By Waveform Format Low PRF Medium PRF High PRF CW (Continuous Wave) By Waveform Pulsed CW Frequency Modulated CW Phase Coded Pseudorandom Coded By Military Number FPS-17 FPS- 85 FPS-118 SPS-48 APG-68 TPQ-36 TPQ-37	By Range Long Range Medium Range Short RangeBy Frequency VHF-Band UHF-Band L-Band S-Band C-Band X-Band K_0-Band K_A-BandOther Solid State Synthetic Aperture (SAR) MTI GMTI
Millstone	MPQ-64	

<u>By Function</u> Surveillance Track Fire Control – Guidance Discrimination	<u>By Platform</u> Ground Ship Airborne Space	<u>By Antenna Type</u> Reflector Phased Array (ESA) Hybrid-Scan
Discrimination By Mission Air Traffic Control Air Defense Ballistic Missile Defense Space Surveillance Airborne Early Warning (AEW) Ground Moving Target Indication (GMTI) By Name Pave Paws (FPS-115) Cobra Dane(FPS-108) Sentinel (MPQ-64) Patriot (MPQ-53) Improved Hawk (MPQ-48) Aegis (SPY-1) ALCOR Firefinder (TPQ-37) TRADEX Haystack	By Waveform Format Low PRF Medium PRF High PRF CW (Continuous Wave) By Waveform Pulsed CW Frequency Modulated CW Phase Coded Pseudorandom Coded By Military Number FPS-17 FPS- 85 FPS-118 SPS-48 APG-68 TPQ-36	By Range Long Range Medium Range Short RangeBy Frequency VHF-Band UHF-Band L-Band S-Band C-Band X-Band K_Band K_A-BandOther Solid State Synthetic Aperture (SAR) MTI
Millstone	TPQ-37 MPQ-64	GMTI

First Letter Installation

A - Piloted Aircraft

- B Underwater Mobile (submarine)
- **D** Pilotless Carrier
- F Fixed Ground
- G General Ground Use
- **K** Amphibious
- **M** Ground Mobile
- P Human Portable
- S Water (surface ship)
- T Transportable (ground)
- U General Utility (multi use)
- V Vehicle (ground)
- W Water Surface and Underwater combined
- Z Piloted/Pilotless Airborne


Highlighted in *blue italics* are typical radar Installations and Purposes

Second Letter Type of Equipment

- A Invisible Light, Infrared)
- C Carrier (electronic wave or signal)
- D Radiac (Radioactivity Detection, ID, and Computation)
- E Laser
- **F** Fiber Optics
- G Telegraph or Teletype
- I Interphone and Public Address
- J Electromechanical or inertial wire covered
- **K** Telemetering
- L Countermeasures
- M Meteorological
- N Sound in Air
- P Radar
- **Q** Sonar and Underwater Sound
- R Radio
- **S** Special or Combination
- T Telephone (Wire)
- V Visual, Visible Light
- W Armament (not otherwise covered)

AN/XYZ-1 or XYZ-1

- X Fax or Television
- Y Data Processing
- Z Communications

- A Auxiliary Assembly
- B Bombing
- C Communications (two way)
- D Direction Finding, Reconnaissance and Surveillance
- E Ejection and/or Release
- G Fire Control or Searchlight Directing
- H Recording and/or Reproducing
- . K - Computing
- L no longer used.
- M Maintenance or Test
- **N** Navigation Aid
- P no longer used.
- **Q** Special or Combination
- R Receiving or Passive Detecting
- S Detecting, Range and Bearing, Search
- T Transmitting
- W Automatic Flight or Remote Control
- X Identification or Recognition
- Y Surveillance (target detecting and tracking) and Control (fire control and/or air control)
- **IEEE New Hampshire Section**

First Letter Installation

- A Piloted Aircraft
- B Underwater Mobile (submarine)
- **D** Pilotless Carrier
- F Fixed Ground
- G General Ground Use
- **K** Amphibious
- **M** Ground Mobile
- P Human Portable
- S Water (surface ship)
- T Transportable (ground)
- U General Utility (multi use)
- V Vehicle (ground)
- W Water Surface and Underwater combined
- Z Piloted/Pilotless Airborne

Second Letter Type of Equipment

- A Invisible Light, Infrared)
- C Carrier (electronic wave or signal)
- D Radiac (Radioactivity Detection, ID, and Computation)
- E Laser
- F Fiber Optics
- G Telegraph or Teletype
- I Interphone and Public Address
- J Electromechanical or inertial wire covered
- K Telemetering
- L Countermeasures
- M Meteorological
- N Sound in Air
- P Radar
- Q Sonar and Underwater Sound
- R Radio
- **S** Special or Combination
- T Telephone (Wire)
- V Visual, Visible Light
- W Armament (not otherwise covered)
- X Fax or Television
- Y Data Processing
- Z Communications

Third letter Purpose

- A Auxiliary Assembly
- B Bombing
- C Communications (two way)
- D Direction Finding, Reconnaissance and Surveillance
- E Ejection and/or Release
- G Fire Control or Searchlight Directing
- H Recording and/or Reproducing
- K Computing
- L no longer used.
- M Maintenance or Test
- N Navigation Aid
- P no longer used.
- **Q** Special or Combination
- R Receiving or Passive Detecting
- S Detecting, Range and Bearing, Search
- T Transmitting
- W Automatic Flight or Remote Control
- X Identification or Recognition
- Y Surveillance (target detecting and tracking) and Control (fire control and/or air control)

Example

AN/TPS-43 or TPS-43

Installation - T – Transportable (ground)

Equipment Type - P - Radar

<u>Purpose</u> - S – Detecting (and/or range and bearing), search

First Letter Installation

- A Piloted Aircraft
- **B** Underwater Mobile (submarine)
- **D** Pilotless Carrier
- **F** Fixed Ground
- G General Ground Use
- **K** Amphibious
- **M** Ground Mobile
- P Human Portable
- S Water (surface ship)
- T Transportable (ground)
- U General Utility (multi use)
- V Vehicle (ground)
- W Water Surface and Underwater combined
- Z Piloted/Pilotless Airborne

Second Letter Type of Equipment

- A Invisible Light, Infrared)
- C Carrier (electronic wave or signal)
- D Radiac (Radioactivity Detection. ID. and Computation)
- E Laser
- F Fiber Optics
- G Telegraph or Teletype
- I Interphone and Public Address
- J Electromechanical or inertial wire covered
- K Telemetering
- L Countermeasures
- **M** Meteorological
- N Sound in Air
- P Radar
- Q Sonar and Underwater Sound
- R Radio
- **S** Special or Combination
- T Telephone (Wire)
- V Visual, Visible Light
- W Armament (not otherwise covered)
- X Fax or Television
- Y Data Processing
- Z Communications

Third letter Purpose

- A Auxiliary Assembly
- B Bombina
- **C** Communications (two wav)
- **D** Direction Finding. Reconnaissance and Surveillance
- E Election and/or Release
- G Fire Control or Searchlight Directing
- H Recording and/or Reproducing
- **K** Computing
- L no longer used.
- M Maintenance or Test
- N Navigation Aid
- P no longer used.
- **Q** Special or Combination
- **R** Receiving or Passive Detecting
- S Detecting, Range and **Bearing, Search**
- **T** Transmitting
- W Automatic Flight or Remote Control
- X Identification or Recognition
- Y Surveillance (target detecting and tracking) and Control (fire control and/or air control)

Example

AN/FPS-16 or FPS-16

Installation - F - Fixed Ground

Equipment Type - P - Radar

Purpose - S – Detecting and/or range, and bearing, search

Courtesy of US Air Force

First Letter Installation

- A Piloted Aircraft
- B Underwater Mobile (submarine)
- **D** Pilotless Carrier
- F Fixed Ground
- G General Ground Use
- **K** Amphibious
- **M** Ground Mobile
- P Human Portable
- S Water (surface ship)
- T Transportable (ground)
- U General Utility (multi use)
- V Vehicle (ground)
- W Water Surface and Underwater combined
- Z Piloted/Pilotless Airborne

Second Letter Type of Equipment

- A Invisible Light, Infrared)
- C Carrier (electronic wave or signal)
- D Radiac (Radioactivity Detection, ID, and Computation)
- E Laser
- **F** Fiber Optics
- G Telegraph or Teletype
- I Interphone and Public Address
- J Electromechanical or inertial wire covered
- K Telemetering
- L Countermeasures
- M Meteorological
- N Sound in Air
- P Radar
- Q Sonar and Underwater Sound
- R Radio
- **S** Special or Combination
- T Telephone (Wire)
- V Visual, Visible Light
- W Armament (not otherwise covered)
- X Fax or Television
- Y Data Processing
- Z Communications

<u>Third letter</u> Purpose

- A Auxiliary Assembly
- B Bombing
- C Communications (two way)
- D Direction Finding, Reconnaissance and Surveillance
- E Ejection and/or Release
- G Fire Control or Searchlight Directing
- H Recording and/or Reproducing
- **K** Computing
- L no longer used.
- M Maintenance or Test
- N Navigation Aid
- P no longer used.
- **Q** Special or Combination
- R Receiving or Passive Detecting
- S Detecting, Range and Bearing, Search
- T Transmitting
- W Automatic Flight or Remote Control
- X Identification or Recognition
- Y Surveillance (target detecting and tracking) and Control (fire control and/or air control)

Example

AN/SPY-1 or SPY-1 (a.k.a. AEGIS)

Installation - S – Water (Surface Ship)

Equipment Type - P - Radar

Purpose - Y – Surveillance and

Control (fire control and air control)

Courtesy of US Navy
IEEE New Hampshire Section

First Letter Installation

- A Piloted Aircraft
- **B** Underwater Mobile (submarine)
- D Pilotless Carrier
- F Fixed Ground
- G General Ground Use
- **K** Amphibious
- **M** Ground Mobile
- P Human Portable
- S Water (surface ship)
- T Transportable (ground)
- U General Utility (multi use)
- V Vehicle (ground)
- W Water Surface and Underwater combined
- Z Piloted/Pilotless Airborne

Second Letter Type of Equipment

- A Invisible Light, Infrared)
- C Carrier (electronic wave or signal)
- D Radiac (Radioactivity Detection. ID. and Computation)
- E Laser
- F Fiber Optics
- G Telegraph or Teletype
- I Interphone and Public Address
- J Electromechanical or inertial wire covered
- K Telemetering
- L Countermeasures
- Q Sonar and Underwater Sound
- R Radio
- **S** Special or Combination
- T Telephone (Wire)
- V Visual, Visible Light
- W Armament (not otherwise covered)
- X Fax or Television
- Y Data Processing
- Z Communications

Third letter Purpose

- A Auxiliary Assembly
- **B** Bombina
- **C** Communications (two wav)
- **D** Direction Finding. Reconnaissance and Surveillance
- E Ejection and/or Release
- G Fire Control or Searchlight Directing
- H Recording and/or Reproducing
- **K** Computing
- L no longer used.
- M Maintenance or Test
- N Navigation Aid
- P no longer used.
- **Q** Special or Combination
- **R** Receiving or Passive Detecting
- S Detecting, Range and Bearing, Search
- **T** Transmitting
- W Automatic Flight or Remote Control
- X Identification or Recognition
- Y Surveillance (target detecting and tracking) and Control (fire control and/or air control)

Example

AN/MPQ-64 or MPQ-64 (a.k.a. Sentinel)

Installation - M – Ground, Mobile

Equipment Type - P - Radar

Purpose - Q – Special or

Combination of Purposes

Courtesy of Raytheon Used with permission. **IEEE New Hampshire Section**

- **M** Meteorological
- N Sound in Air
- P Radar

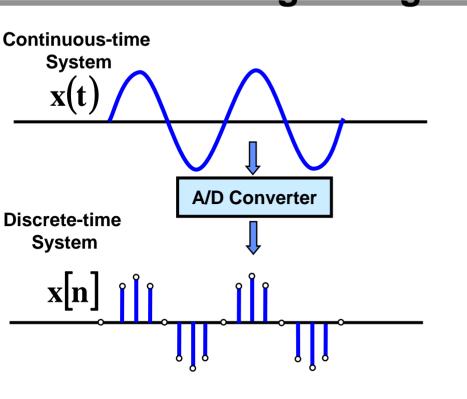
- Background
- Radar basics
- ➡● Course overview
 - One viewgraph for each lecture topic

- Prelude
- Introduction
- Review of Electromagnetism
- Review of Signals and Systems, and Digital Signal Processing
- The Radar Equation
- Atmospheric Propagation Effects
- Detection of Signals in Noise
- Radar Cross Section
- Antennas Basics and Mechanical Scanning Techniques
- Antennas Electronic Scanning and Hybrid Techniques
- Radar Clutter

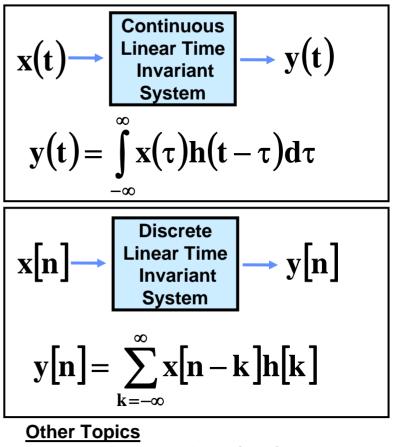
- Radar Waveforms and Pulse Compression Techniques
- Clutter Rejection Techniques Basics and MTI (Moving Target Indication)
- Clutter Rejection Techniques Pulse Doppler Processing
- Adaptive Processing
- Airborne Pulse Doppler Radar
- Radar Observable Estimation
- Target Tracking
- Transmitters
- Receivers

- Electronic Counter Measures (ECM)
- Radar Design Considerations
- Radar Open Systems Architecture (ROSA)
- Synthetic Aperture Radar (SAR) Techniques
- Inverse Synthetic Aperture Radar (ISAR) Techniques
- Over-the-Horizon Radars
- Weather Radars
- Space Based Remote Sensing Radars
- Air Traffic Control, Civil, and Marine Radars
- Ground Penetration Radars
- Range Instrumentation Radars
- Military Radar Systems

The total length of each topic will vary from about 30 minutes to up to possibly 2 hours. The video stream for most topics will be broken up into a few "easily digestible" pieces, each 20-30 minutes in length.



	Maxy	well's Equations	
	Integral Form		
	$\oint \vec{\mathbf{D}} \cdot \mathbf{d} \vec{\mathbf{S}} = \iiint \rho \mathbf{d}^{Y}$	$\mathbf{V} \qquad \nabla \cdot \vec{\mathbf{D}} = 4\pi\rho$	
	$\oint \vec{B} \cdot d\vec{S} = 0$	$\nabla \cdot \vec{\mathbf{B}} = 0$	
	$\oint \vec{\mathbf{E}} \cdot \mathbf{d} \stackrel{\rightarrow}{\mathbf{s}} = -\iint \frac{\partial \vec{\mathbf{B}}}{\partial t}.$	$\cdot \mathbf{d} \overrightarrow{\mathbf{S}}$ $\overrightarrow{\nabla} \times \overrightarrow{\mathbf{E}} = -\frac{\partial \overrightarrow{\mathbf{B}}}{\partial \mathbf{t}}$	
Market Parts	$\oint \vec{\mathbf{H}} \cdot \mathbf{d} \stackrel{\rightarrow}{\mathbf{s}} = \iint \left(\frac{\partial \vec{\mathbf{D}}}{\partial \mathbf{t}} - \right)$	$(\vec{J} + \vec{J}) \cdot \vec{dS} \qquad \vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$	
James Clerk Maxwell	$\vec{\mathbf{D}} = \varepsilon \vec{\mathbf{E}}$ $\vec{\mathbf{B}} =$	μH y Magnetic Field	
NO SOURCES	$\mathbf{E}_{\circ}\mathbf{e}^{\mathbf{j}(\mathbf{k}\cdot\mathbf{r}-\mathbf{j}\mathbf{wt})}$	λ	
Vacuum Non-Conducting Medum $\vec{B}(\vec{r},t) =$	$\mathbf{B}_{\circ}\mathbf{e}^{\mathbf{j}(\mathbf{k}\cdot\mathbf{r}-\mathbf{j}\mathbf{wt})}$	x	
		IEEE New Hampshire Section	



Review – Signals and Systems, and Digital Signal Processing

Discrete Fourier Transform (DFT)

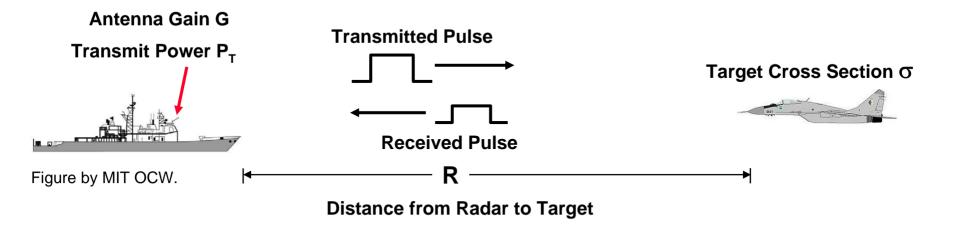
$$\mathbf{X}(\omega) = \sum_{n=-\infty}^{\infty} \mathbf{x}[n] e^{-j\omega n}$$

 Other Topics

 Fast Fourier Transform (FFT)

 Convolution

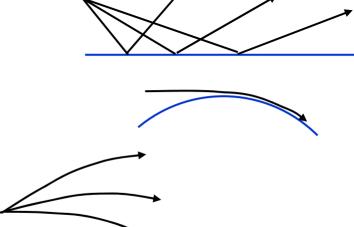
 Sampling Theorem - Aliasing


 Digital Filters

 Low pass, High Pass, Transversal)

 Filter Weighting

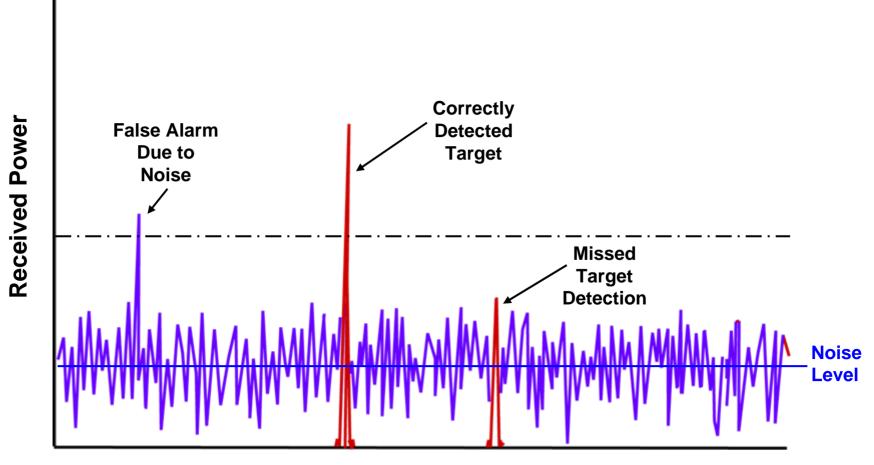
Radar Range Equation

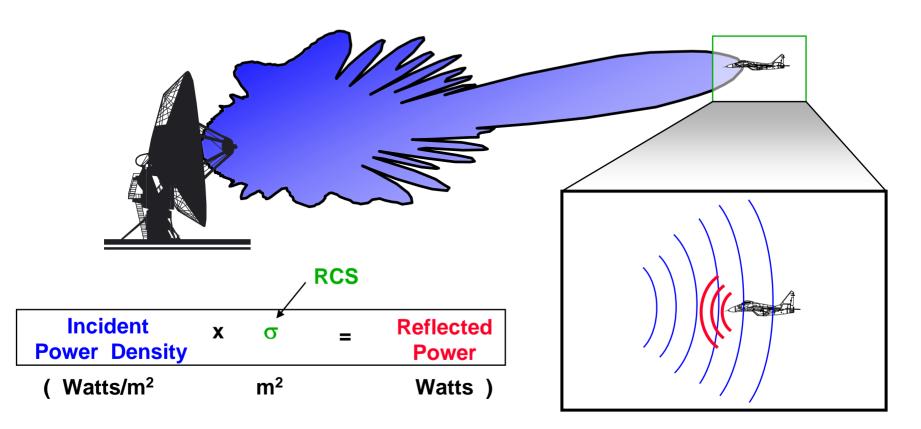

 $\frac{S}{N} = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 k T_s B_n L}$

Propagation Effects on Radar Performance

- Atmospheric attenuation
- Reflection off of Earth's surface
- Over-the-horizon diffraction
- Atmospheric refraction

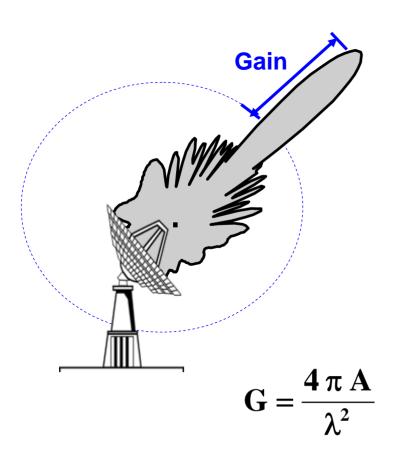
Courtesy of MIT Lincoln Laboratory Used with permission





Range (Time after Transmit Pulse)

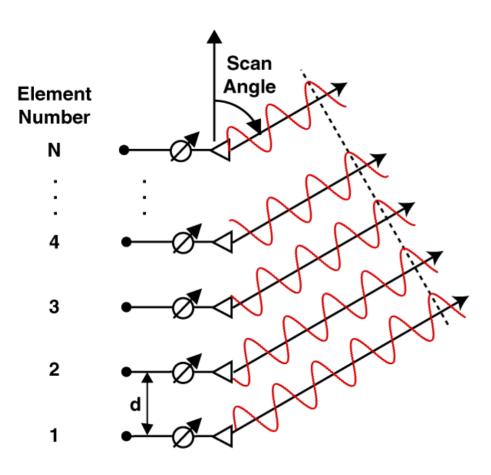
Radar Cross Section (RCS, or σ) is the <u>effective</u> crosssectional area of the target as seen by the radar


Measured in m², or dBsm

Antennas – Fundamentals and Mechanical Scanning Techniques

Directional Antenna

ALTAIR Antenna

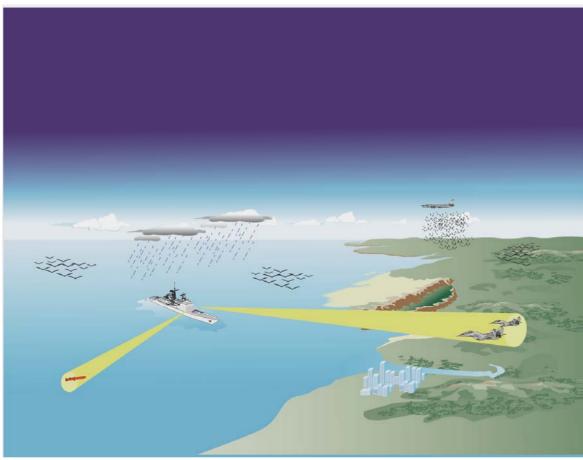


Courtesy of MIT Lincoln Laboratory Used with permission

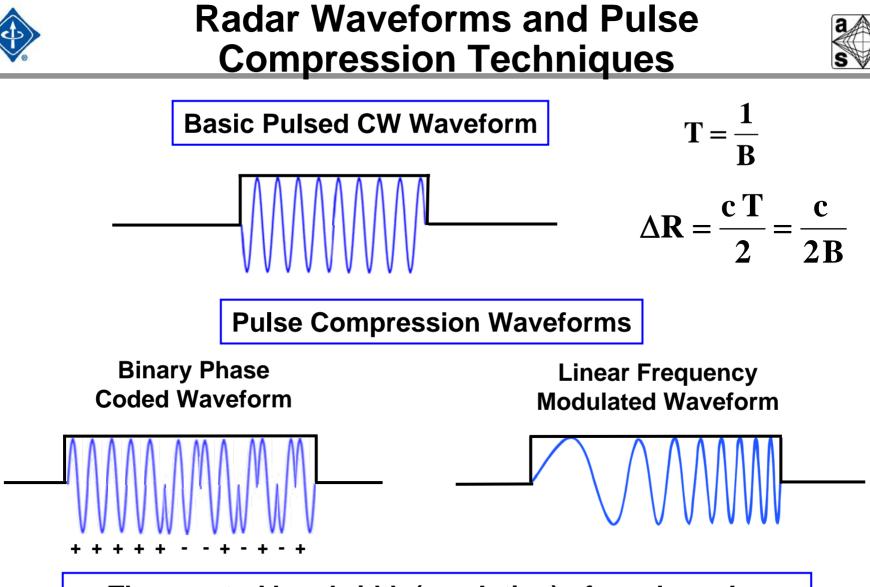
Antennas – Electronic Scanning Techniques

Courtesy of MIT Lincoln Laboratory Used with permission

Patriot Radar (MPQ-53)


AEGIS Radar (SPY-1)

Naval Air Defense Scenario



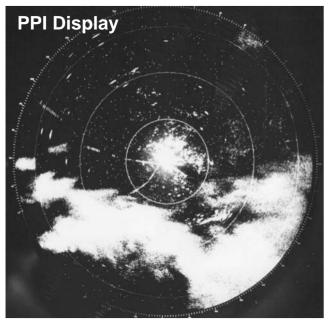
Courtesy of MIT Lincoln Laboratory Used with permission

Radar echo is composed of:

- Backscatter from target of interest
- Receiver noise
- Atmospheric noise
 - Interference From other radars Jammers
- Backscatter from unwanted objects

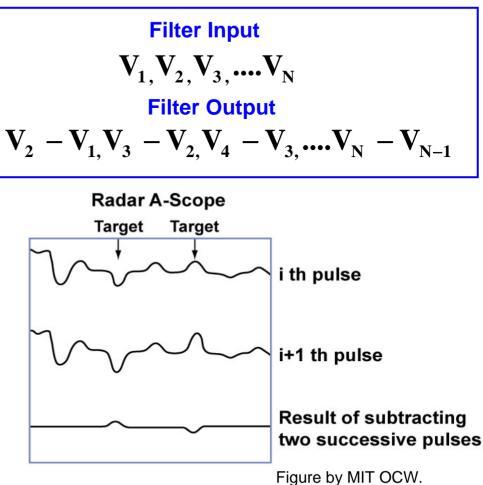
Ground Sea Rain Chaff Birds Ground traffic

The spectral bandwidth (resolution) of a radar pulse can be increased, if it is modulated in frequency or phase



Radar Signal Processing I

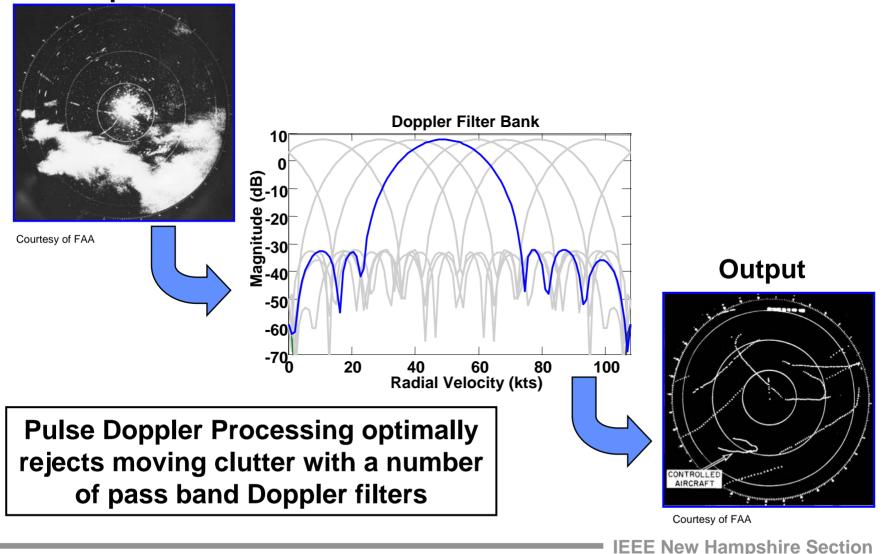
Basics and MTI (Moving Target Indication) Techniques


Unprocessed Radar Backscatter

Courtesy of FAA

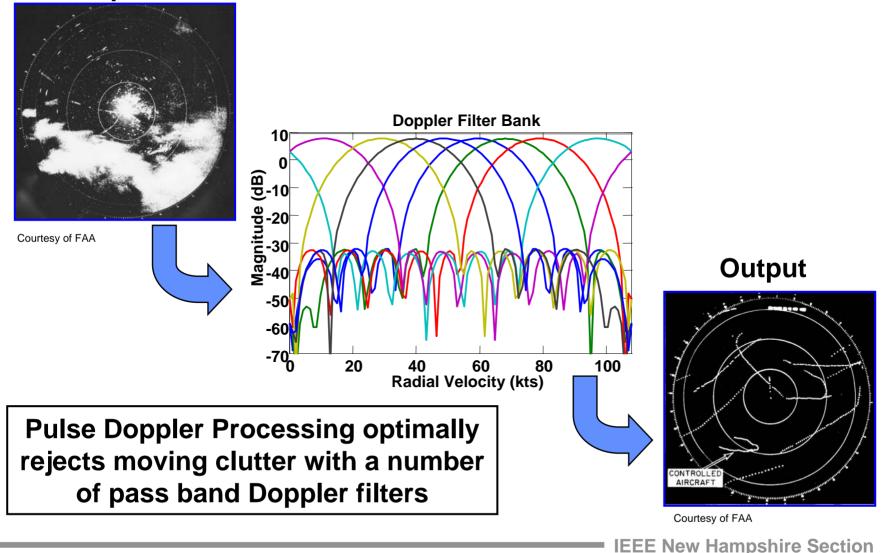
Use low pass Doppler filter to suppress clutter backscatter

Two Pulse MTI Filter



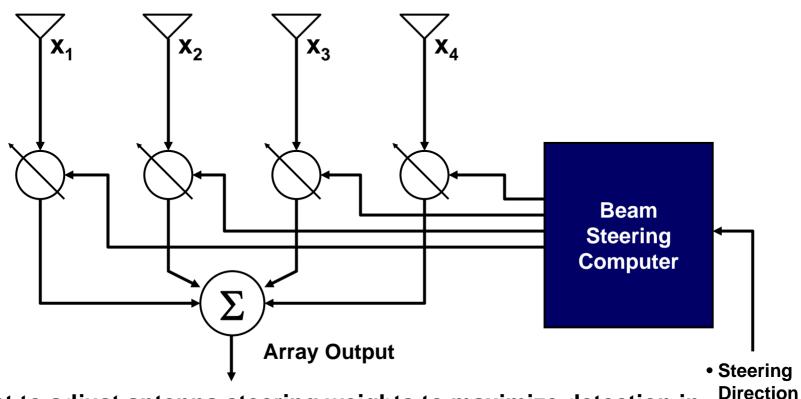
Radar Signal Processing II

Pulse Doppler Processing



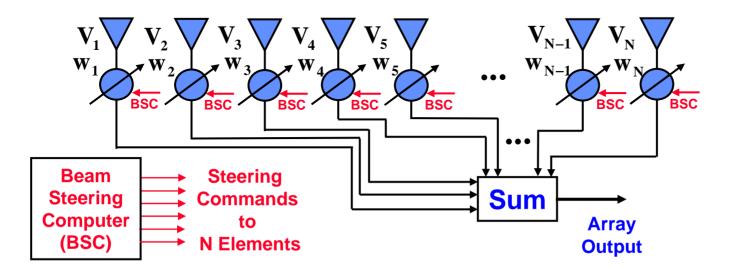
Radar Signal Processing II

Pulse Doppler Processing



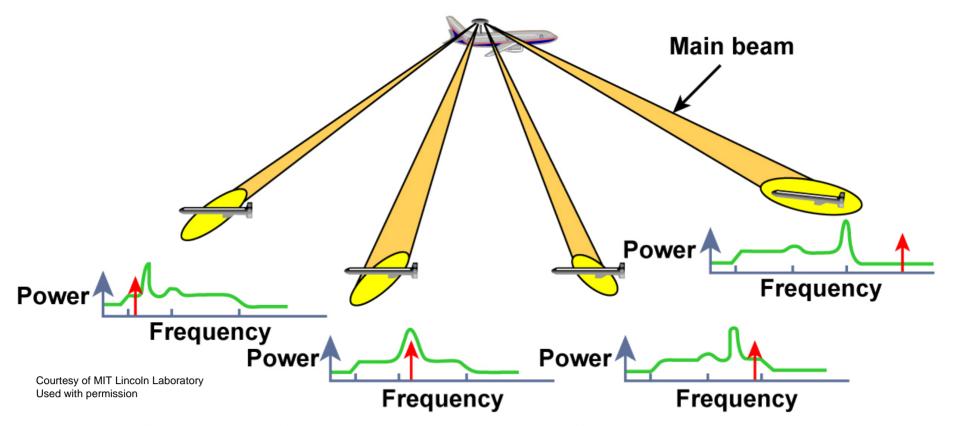
Radar Signal Processing III

Adaptive Processing



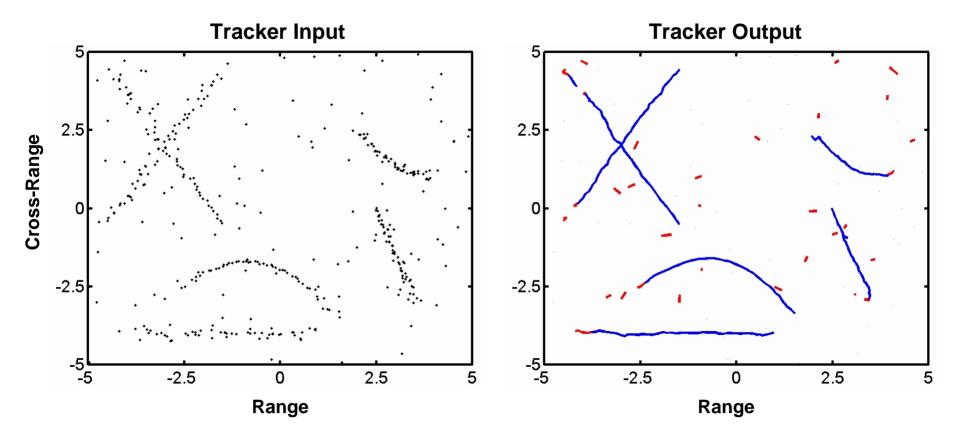
- Want to adjust antenna steering weights to maximize detection in the direction of the wanted target, while putting nulls in the direction of jamming and clutter?
 Direction
 Element positions
- The same methods may be used to weight the received signal in the time domain, so that targets are optimally detected and the unwanted clutter (rain, chaff, etc) are rejected by low Doppler filter sidelobes.

Adaptive Processing



- Goal: calculate and set antenna weights so that Antenna gain in the target's direction is maximized, while antenna sidelobes are minimized (nulls) in the direction of jamming and clutter
- Doppler processing uses these techniques to maximize detection at the Doppler of the target, while placing low sidelobes at the Doppler frequencies of clutter

Illustrative example without Pulse-Doppler ambiguities



Doppler frequency of mainbeam clutter depends on scan direction
 Doppler frequency of target depends on scan direction and target aspect angle

Courtesy of MIT Lincoln Laboratory Used with permission

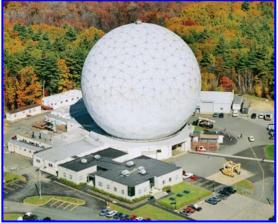
Transmitters

Tubes or T/R Modules ? Answer: Both have their place!

PAVE PAWS UHF T/R Module

Courtesy of Raytheon Used with permission.

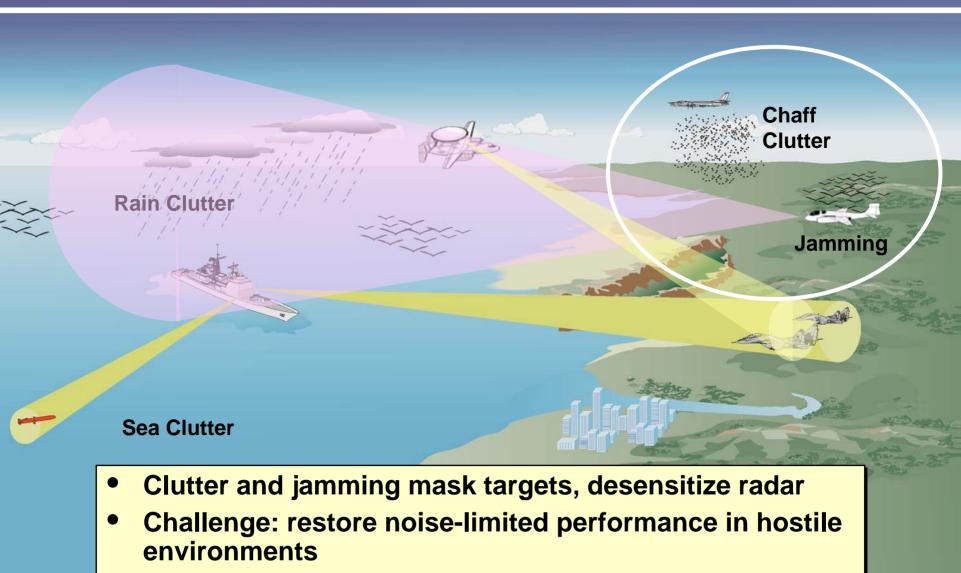
PAVE PAWS Radar



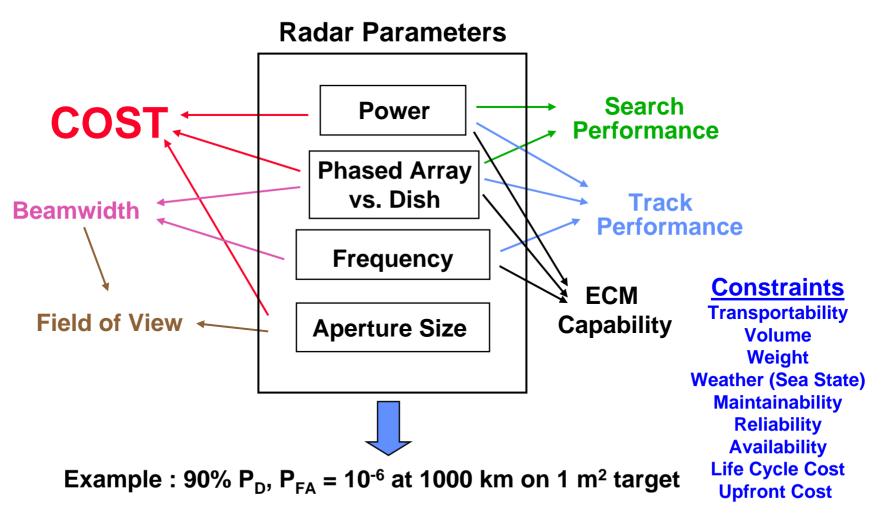
Courtesy of Raytheon. Used with permission.

Courtesy of MIT Lincoln Laboratory. Used with permission.

Haystack Radar


Wave Tube

Courtesy of MIT Lincoln Laboratory. Used with permission.


Electronic Counter Measures (ECM)

"A Curse of Dimensionality"

Architecture based on modular independent functions connected through well defined open systems interfaces

Radar Open Systems Architecture (ROSA)

Hardware obsolescence

- Radar functions are organized as rational, accessible. modular subsystems
- Industry standard interfaces

Custom development

COTS HW, open source operating system and S/W

Evolutionary product improvements

Software rehost

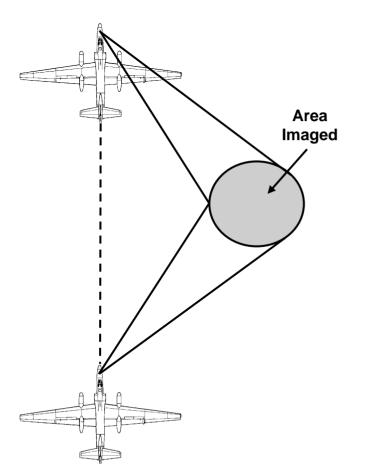
COTS **Exciter Receiver** Signal Processor

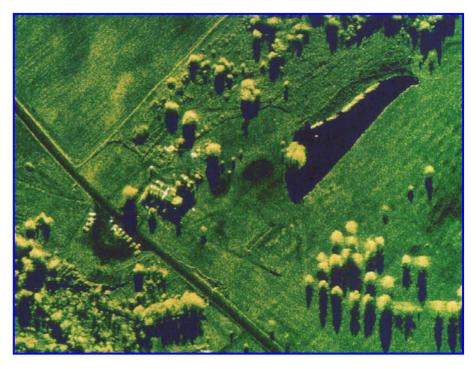
Signal

Processor

Main Computer

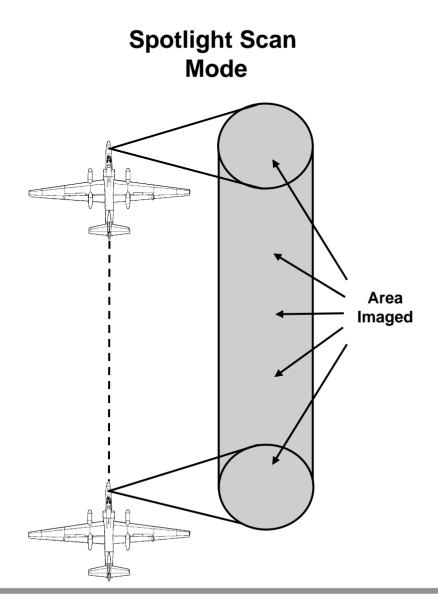
IEEE New Hampshire Section


Traditional Radar System Architecture


Synthetic Aperture Radar (SAR) Techniques

Spotlight Scan Mode

SAR Image of Golf Course



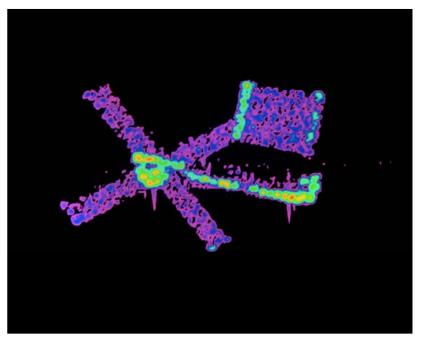
Courtesy of MIT Lincoln Laboratory Used with permission

Synthetic Aperture Radar (SAR) Techniques

SAR Image of Golf Course

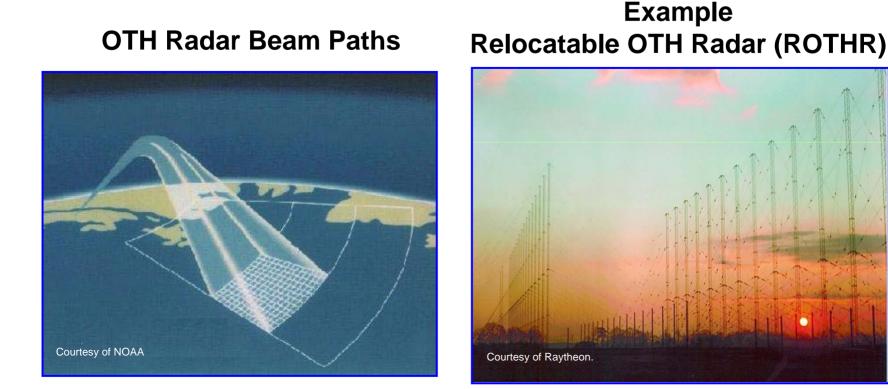
Courtesy of MIT Lincoln Laboratory Used with permission

Inverse Synthetic Aperture Radar (ISAR) Techniques



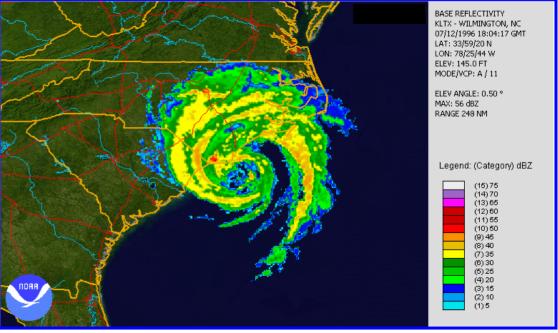
Photograph of Skylab

Courtesy of NASA


Simulated Range-Doppler Image of Skylab

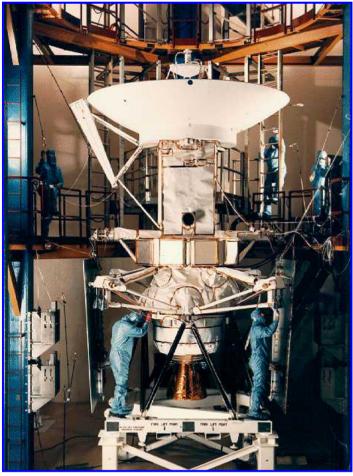
Courtesy of MIT Lincoln Laboratory Used with permission

Typically operate at 10 – 80 m wavelengths (3.5 – 30 MHz)
OTH Radars can detect aircraft and ships at very long ranges (~ 2000 miles)



NEXRAD (aka WSR-88)

Weather map for Hurricane Bertha 1996



Courtesy of NOAA

Magellan Radar

Courtesy of NASA

SAR Map of Venus

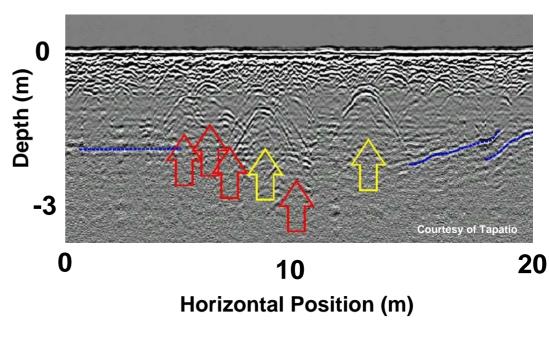
Courtesy of NASA

Courtesy of Target Corporation

Courtesy of neonbubble

Courtesy of FAA

Courtesy of Northrop Grumman. Used with permission.



Ground Penetrating Radar (GPR)

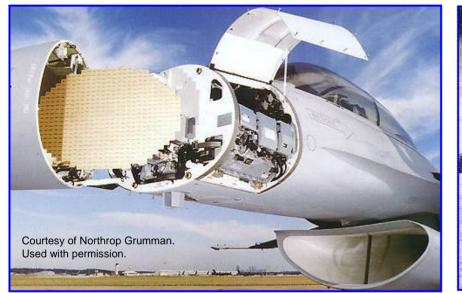
Courtesy of seabird

Ground Penetrating Radar Data From Burial Ground

Range Instrumentation Radars

Courtesy of MIT Lincoln Laboratory. Used with permission.




Military Radar Systems

- A radar sends a short pulse of microwave electromagnetic energy directed towards the moon. Some of the energy scatters off of the moon's surface and returns to the radar. What is the round trip time? If the target was an aircraft 150 nmi. distant, what is the round trip time?
- A radar transmits a pulse of width of 2 microseconds. What is the closest 2 targets can be and still be resolved?
- You are traveling 75 mph in your new bright red Ferrari. A nearby policeman, using his hand held X-Band (frequency = 9,200 MHz) speed radar, transmits a CW signal from his radar, which then detects the Doppler shift of the echo from your car. Assuming that you are speeding directly towards his speed trap, how many Hz is the frequency of the received signal shifted by the Doppler effect? Is the Doppler shift positive or negative?

- As I hope you can see, we are going to cover a lot of ground in the course
- Good Luck in the journey !
- The next 2 lectures will be rather quick reviews of some topics that you should have facility with to get the most out of this course
 - First Review lecture
 Electomagnetics
 - Second Review Lecture
 Signals and Systems
 Digital Signal Processing

- 1. Skolnik, M., *Introduction to Radar Systems*, McGraw-Hill, New York, 3rd Ed., 2001
- 2. Nathanson, F. E., *Radar Design Principles*, McGraw-Hill, New York, 2nd Ed., 1991
- 3. Toomay, J. C., *Radar Principles for the Non-Specialist*, Van Nostrand Reinhold, New York, 1989
- 4. Buderi, R., *The Invention That Changed the World*, Simon and Schuster, New York, 1996
- 5. Levanon, N., Radar Principles, Wiley, New York, 1988
- 6. Ulaby, F. T., *Fundamentals of Applied Electromagnetics*, Prentice Hall, Upper Saddle River, 5th Ed., 2007